
J. Fluid Mech. (1999), vol. 401, pp. 27–54. Printed in the United Kingdom

c© 1999 Cambridge University Press

27

Dispersive effects in Rossby-wave hydraulics
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This paper considers the role of long finite-amplitude Rossby waves in determining
the evolution of flow along a rapidly rotating channel with an uneven floor. The
Rossby waves travel on a potential vorticity interface in a channel with a cross-
channel step change in depth, where step position varies slowly along the channel. A
nonlinear wave equation is derived describing the evolution of the potential vorticity
interface. To leading order this is the hydraulic equation derived by Haynes, Johnson
& Hurst (1993). Dispersion appears at the next order. Various solution regimes are
identified. As well as slowly varying hydraulic solutions, two further types of steady
solutions appear: approach-controlled flows and twin supercritical leaps. Both these
solutions are characterized by leaps between supercritical branches of the hydraulic
function. It is shown how the position and size of these ‘supercritical leaps’ can
be determined within the context of hydraulic theory. To fully resolve the internal
structure of these leaps dispersive effects must be included and leaps are shown to
correspond to kink soliton solutions of the steady unforced problem. It is also shown
that increasing dispersion (decreasing topographic length scale) causes the loss of the
subcritical solution branch in some subcritical flows. The only candidate for a steady
solution in these regimes is then an approach-controlled flow. Integrations of initial
value problems show that in general flows evolve towards the dispersive form of the
solution predicted by hydraulic theory, at least near the topographic perturbation.
However, in those subcritical flows where sufficiently large dispersion causes the
subcritical branch to disappear, unsteady integrations evolve to approach-controlled
flows even when the dispersion is sufficiently small that the subcritical branch still
exists.

1. Introduction
The nonlinear flow response to slowly varying perturbations is often largely deter-

mined by the local strength of the perturbation to the flow. The perturbation can be
contractions in the width of a waveguide or changes in the fluid depth. One of the
most successful examples of slowly varying theory is the hydraulic theory of open
channel flow. Baines (1995) gives a review of this theory and also its extension to
interfacial and internal waves in two-layer and continuously stratified flows.

Regions of flow are described as supercritical or subcritical depending on whether
the local flow speed is greater or less than some intrinsic wave speed. In a rotating
fluid hydraulic behaviour can occur for ‘fast’ modes like Kelvin waves and for ‘slow’
modes like Rossby waves and coastally trapped waves. Studies of the hydraulics of
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Kelvin waves are reviewed in Pratt & Lundberg (1991). The hydraulics of slow modes
over coastal topography and in straits has been considered by, among others, Hughes
(1985a, b, 1986a, b, 1987, 1989), Pratt & Armi (1987), Pratt & Lunderberg (1991),
Stern (1993) and Woods (1993).

One of the simplest configurations that supports Rossby waves is a rotating channel
with a cross-channel step change in depth. Topographic Rossby waves can be gener-
ated in this system when a uniform flow along the channel encounters a perturbation
to the position of the step. This geometry was considered by Haynes, Johnson &
Hurst (1993, referred to hereinafter as HJH), who used hydraulic theory, both steady
and unsteady, and contour-dynamical (CD) simulations to study hydraulic control
and upstream influence. They showed that, in addition to fully subcritical and super-
critical flows, the flow could behave like hydraulically controlled open-channel flow,
being subcritical upstream of the maximum topographic perturbation and supercriti-
cal downstream. HJH also described an unusual controlled flow where the long-wave
speed vanishes at the leading edge of the topographic perturbation. The flow is super-
critical downstream of the leading edge and jumps from one supercritical branch of
the hydraulic solution to another downstream of the maximum topographic pertur-
bation. It was not clear what determined the form and position of this supercritical
jump. For moderately long obstacles, where the length was longer than the channel
width, the agreement between the CD simulations of HJH and the steady hydraulic
solutions was generally excellent near the topographic perturbations. Away from the
perturbations free waves with significant amplitudes, absent from hydraulic theories,
appeared. The discussion in HJH was limited to the case where the position of the
step far upstream and downstream, Y0, was midway between the sides of the channel.
A weakly nonlinear equation was derived by HJH to describe the near-critical forcing
for general Y0. When Y0 is mid-channel the quadratic nonlinearity in this equation
vanishes and only a odd nonlinear term remains. As Y0 moves towards either side of
the channel quadratic nonlinearity dominates. Studies of the weakly nonlinear forcing
of a two-layer fluid by flow over topography show that the behaviour is very different
when the initial position of the thermocline is mid-depth (Melville & Helfrich 1987;
Marchant & Smyth 1990), and so asymmetrically placed steps could lead to markedly
different flows from the symmetrically placed steps of HJH.

It is the purpose of this paper to investigate in greater analytical and numerical
detail the behaviour of the flows in HJH. In the course of this investigation it will
be shown that the choice there of a symmetrically placed step is special and new
behaviour is found for asymmetrically placed steps. Steady and unsteady transient
and forced wavetrains are described and a complete specification of the structure
and position of the supercritical jump of HJH given. It is shown that the transition
corresponds directly to the ‘supercritical leap’ (Baines 1995) identified in stratified,
two-layer non-rotating flow by Lawrence (1993) and Baines (1984). Progress is made
possible by introducing the leading-order effects of dispersion into the hydraulic
equations and thus retaining dispersive long-wave dynamics in a finite-amplitude
evolution equation. Similar dispersive effects, based on the study of finite-amplitude
waves on coastal currents by Grimshaw & Yi (1990), are introduced in Clarke
& Johnson (1997a, b) to model the CD simulations of a coastal current in Stern
(1991). An important advantage of the resulting evolution equation is that numerical
integration is an order of magnitude faster than CD integrations, allowing a more
comprehensive exploration of the parameter space. In Clarke & Johnson (1999,
referred to hereinafter as CJ), the introduction of leading-order dispersion allowed
discussion of the steady free-wave solutions of the unforced system of HJH. These



Dispersive effects in Rossby-wave hydraulics 29

Y0

y

χ

#

y = Yh (v)

α

Figure 1. The non-dimensionalized geometry. The channel has width 1 and the step edge (shown
dashed here and in subsequent figures) is at y = Yh(χ) with the shallower, shelf, region in y < Yh.
Here χ = µ1/2x is the along-channel distance scaled on the channel width and µ1/2 � 1. Far
upstream and downstream Yh → Y0. The maximum deviation of the shelf edge from Y0 is given by
−ε and is not required to be small. The oncoming flow has speed α from right to left. The material
interface C (shown as a solid line here and subsequently) separates fluid with potential vorticity
1 from fluid with potential vorticity 0. If this is a single-valued function of χ it can be written as
y = Y , and then in y > Y (χ) fluid has potential vorticity 0 and in y < Y (χ) fluid has potential
vorticity 1.

solutions correspond to the finite-amplitude waves observed by HJH away from
the topographic perturbation and also describe aspects of the behaviour near the
topography.

In terms of the parameter µ1/2, giving the ratio of the channel width to the scale
of along-channel variations in shelf-width, hydraulic theory corresponds to the limit
µ→ 0, and topographic variations appear only parametrically. Section 2 considers the
first effects of finite-length topography for 0 < µ � 1, showing that these introduce
dispersion into the wave dynamics, and deriving the unsteady, forced dispersive
wave equation. Section 3 discusses flow behaviour in the hydraulic limit (µ → 0)
of arbitrarily long obstacles, obtaining the size and position of supercritical leaps
and an apparently novel flow type with a twin supercritical leap. Section 4 describes
steady dispersive flows (0 < µ � 1), noting the finite-amplitude Rossby-wave wakes
in subcritical flow, the internal structure of the supercritical leaps in supercritical
flow, and the loss of the subcritical solution branch with increasing µ in some regions
of parameter space. Section 5 describes the unsteady dispersive evolution of flows
from given initial conditions for three representative choices of Y0. The results are
discussed briefly in § 6.

2. The dispersive evolution equation
Consider inviscid flow in a rotating channel of constant width L and mean depth

H0, with a rigid upper surface and variable bottom topography as shown in figure
1. Let the rotation be sufficiently fast and the bottom topography sufficiently low†
that the flow is two-dimensional with governing equation the non-dimensional (quasi-
geostrophic) conservation of potential vorticity (PV):

∂q

∂t
+
∂(Ψ, q)

∂(x, y)
= 0, (2.1)

† The extension to step heights of order the fluid depth is straightforward and follows Bidlot &
Stern (1994).
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where q is the PV scaled on Q, (x, y) are Cartesian coordinates scaled on L, t is time
scaled on Q−1, and Ψ is a streamfunction, scaled on QL2. The PV is thus

Qq = Q∇2Ψ +
f0h

H0

, (2.2)

where f0 is the Coriolis parameter and h the height of the bottom topography.
Let the channel walls be at y = 0, 1 and consider a flat shelf with a downward† step

change h0 in depth at the shelf edge y = Yh(χ). Here χ gives the scale of along-channel
variations in the shelf and is currently unrestricted. The relationship between χ and x
gives the small parameter, µ, for the subsequent analysis. In particular let χ = µ1/2x,
and τ = µ1/2t. The step shelf can thus be written h = h0H(1− Yh), where H(·) is the
Heaviside step function. For simplicity the change in the shelf width is taken here to
have a single, isolated extremum so Yh(χ)→ Y0 (say) as χ→ ±∞.

Let the fluid be at rest at t = 0. At t = 0+ a constant, down-channel (in the negative-
x direction), non-dimensional, volume flux α is imposed and then maintained for all
t > 0. The initial PV distribution can thus be written as q = H(1 − Yh), where the
previously undetermined PV scale Q has been taken equal to the PV generated by
topographic vortex stretching, f0h0/H0. The imposed flow causes the material interface
C separating the two regions of piecewise-constant potential vorticity to be advected
from its initial position Yh(χ). Fluid moving off the shelf gains positive relative vorticity
while fluid moving onto the shelf gains negative relative vorticity. Provided C remains
a single-valued function of x its position can be written as y = Y (χ, τ). Writing the
total streamfunction as a mean flow component and a perturbation streamfunction ψ,

Ψ (χ, y, τ) = αy + ψ(χ, y, τ), (2.3)

allows the evolution of the flow to be described in terms of

ψyy + µψχχ = H(y − Yh)−H(y − Y ), (2.4a)

where
ψ = 0 on y = 0, 1, (2.4b)

Yτ =
∂

∂χ
{αY (χ, τ) + ψ(χ, Y (χ, τ), τ)}, (2.4c)

Y (χ, 0) = Yh(χ). (2.4d)

So far no restrictions have been placed on the size of the topographic perturbation.
Analytical progress can be made by limiting attention to infinitesimal perturbations
in the shelf width; however, the resulting linear wave problems miss much of the
remarkable nonlinear behaviour of the flow. Here no restriction will be placed on
the amplitude of the deviation of the shelf edge from its upstream value, rather the
analysis will be simplified by considering shelves whose width varies only slowly along
the channel, i.e. by taking µ � 1. The CD integrations in HJH then correspond to
arbitrary µ and the hydraulic theory to the limit µ → 0. Analytical results will be
extended to small but finite µ, introducing the leading-order effects of dispersion to
the theory of HJH. Seeking a perturbation solution of the form

ψ = ψ(0) + µψ(1) + · · · (2.5)

† Results for upward steps follow by noting that the transformation x→ −x, y → 1− y maps a
downward step to an upward one.
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gives the leading-order equation

ψ(0)
yy = H(y − Yh)−H(y − Y ). (2.6)

Each term in the expansion for ψ satisfies the homogeneous boundary condition
(2.4b) and so

ψ(0) = 1
2
H(y − Yh)(y − Yh)2 − 1

2
H(y − Y )(y − Y )2 + 1

2
((1− Y )2 − (1− Yh)2)y, (2.7)

ψ(1) = − 1

12

∂2

∂χ2

{
1
2
H(y − Yh)(y − Yh)4 − 1

2
H(y − Y )(y − Y )4

+((1− Y )2 − (1− Yh)2)(y3 − y) + 1
2
((1− Y )4 − (1− Yh)4)y

}
. (2.8)

The dynamic interface condition (2.4c) gives, with (2.4d), the initial value problem

Yτ =
∂

∂χ

{
αY + 1

2
H(Y − Yh)(Y − Yh)2 + 1

2
((1− Y )2 − (1− Yh)2)Y

+
µ

6

[
H(Y − Yh)(Y − Yh)2(Yhχχ(Y − Yh)− 3Y 2

hχ)

−Y [Yhχχ(1− Yh)(Y 2 − 1 + (1− Yh)2)− Y 2
hχ(Y

2 − 1 + 3(1− Yh)2)]

−2Y (1− Y )
∂

∂χ
{Y (1− Y )Yχ}

]}
+ O(µ2), (2.9a)

Y (χ, 0) = Yh(χ). (2.9b)

At leading order this is the hyperbolic system studied in HJH. This paper considers
solutions of (2.9) for topography of the form

Yh = Y0 − εf(χ), (2.10)

where f has maximum unity and minimum zero. Numerical simulations use the
particular choice

Yh = Y0 − ε sech2 χ. (2.11)

As (2.4), and consequently (2.9), is invariant under the transformation (ψ, y, Y , Yh)→
1− (ψ, y, Y , Yh), it is sufficient to consider only narrowings of the shelf, i.e. 0 6 ε < Y0.

3. The hydraulic limit
The leading-order (in µ) approximation to (2.9) is the unsteady hydraulic equation

∂Y

∂τ
− ∂Ψh

∂Y

∂Y

∂χ
=
∂Ψh

∂Yh

∂Yh

∂χ
, (3.1)

where

Ψh(Y , Yh) = αY + 1
2
Y
[
(1− Y )2 − (1− Yh)2

]
+ 1

2
(Y − Yh)2H(Y − Yh). (3.2)

Equation (3.1) is a forced first-order wave equation, giving the long-wave speed
(rightwards positive) for small disturbances to the interface C as

c(χ) = −∂Ψh(Y , Yh)

∂Y
. (3.3)



32 E. R. Johnson and S. R. Clarke

The flow is supercritical in regions where c < 0 with information carried downstream
to the left along the interface and subcritical where c > 0 with information carried
upstream. In general the wave speed depends on both the position of the interface, Y ,
and the position of the shelf edge, Yh. However, for infinitesimal waves, where both
Y and Yh differ negligibly from Y0, the upstream position of the shelf edge, the speed
c reduces to the difference between the flow speed α and the infinitesimal long-wave
speed Y0(1− Y0). A Froude number for the flow can thus be introduced as

Fr = α/[Y0(1− Y0)], (3.4)

with Fr > 1 corresponding to c > 0 and supercritical small-amplitude flow and Fr < 1
corresponding to c < 0 and subcritical small-amplitude flow.

The function Ψh(Y , Yh) is precisely the hydraulic function G(Y , Yh) discussed in
HJH and CJ. Steady hydraulic solutions satisfy, from (3.1),

Ψh(Y (χ), Yh) = Ψ0, (3.5)

for some constant Ψ0, the value of the streamfunction on the steady interface C. HJH
show how these solutions for a given flow speed α can be represented as contours
of the hydraulic function Ψh in (Y , Yh)-space, plots referred to here as hydraulic
diagrams. Figure 2 shows the hydraulic diagrams and interface displacement for the
four types of flow identified in HJH†.

Since ∂Ψh/∂Yh is positive, supercritical regions correspond to sections of trajectories
on the hydraulic diagram with negative slope and subcritical flows to sections with pos-
itive slope. The slope becomes vertical at critical points where c vanishes. Completely
subcritical and completely supercritical flows are localized, upstream–downstream
symmetric flows (for symmetric topography), corresponding to monotonic trajecto-
ries. In both these flows Y → Y0 as χ → ∞ so the trajectory passes through (Y0, Y0)
and Ψ0 = αY0. For constriction-controlled (CC) solutions the long-wave speed is zero
at the maximum topographic perturbation (where Yh = Yε), positive upstream and
negative downstream. The flow is subcritical upstream of the control, critical at the
control and supercritical downstream. The interface streamfunction value Ψ0 is thus
determined by requiring that c vanishes, i.e. (Ψh)Y = 0, when Yh = Yε.

3.1. Approach-controlled flows and supercritical leaps

For approach-controlled (AC) flows the long-wave speed vanishes at the upstream,
leading, edge of the obstacle. The trajectory must pass through Yh = Yε but in this
parameter regime no subcritical branch attains this value of Yh. The flow is thus
supercritical downstream of the leading edge. The value of Ψ0 on AC trajectories is
determined by requiring that c vanishes, i.e. (Ψh)Y = 0, at the leading edge. HJH note
that although for symmetric topography a completely symmetrical supercritical AC
solution exists with

lim
χ→−∞Y = lim

χ→∞Y 6= Y0, (3.6)

this is not observed in contour dynamical integrations of the initial value problem.
Downstream of the maximum topographic perturbation the flow falls to a different
supercritical branch. In discussions of stratified two-dimensional two-layer non-
rotating flow over ridges Lawrence (1993) and Baines (1984) described a flow type
(termed approach-controlled flow by Lawrence) that is closely analogous to this AC

† The hydraulic diagrams here are reflected about the line Y = Yh compared to those in HJH
so as to be more closely comparable to those usually presented for stratified flows.



Dispersive effects in Rossby-wave hydraulics 33

1.0

0.5

0 0.5 1.0

1.0

0.5

0
–5 0–10 5 10

(a)

Y

1.0

0.5

0 0.5 1.0

1.0

0.5

0
–5 0–10 5 10

(b)

Y

1.0

0.5

0 0.5 1.0

1.0

0.5

0
–5 0–10 5 10

(c)

Y

1.0

0.5

0 0.5 1.0

1.0

0.5

0
–5 0–10 5 10

(d )

Y

Yh v

Figure 2. Examples of the four types of hydraulic solutions of (3.5) considered by HJH for Y0 = 0.5:
(a) subcritical (ε = 0.15, α = 0.05, so Fr = 0.2), (b) constriction-controlled (ε = 0.15, α = 0.1, so
Fr = 0.4), (c) approach-controlled (ε = α = 0.15, so Fr = 0.6) and (d) supercritical (ε = 0.15, α = 0.3,
so Fr = 1.2). The left-hand part of each example gives the hydraulic diagram, with contours of Ψh

shown here, and in subsequent hydraulic diagrams, as dash-dotted lines. These give possible steady
hydraulic flows. The chosen solution (discussed in the text) is shown (here and subsequently) by the
bold solid line. The right-hand part of each example shows the position of the interface C (solid
line) in the channel geometry for the shelf edge (dashed line) (2.11).

flow with its transition between supercritical branches and so, following the stratified
flow convention (Baines 1995), these transitions are described as supercritical leaps
(SLs) here. The reason for the SL in AC flows in HJH, its position, and its structure
are not considered there. However, straightforward considerations allow the SL to
be completely fixed. Let Ys(χ) be a steady solution of (3.1) so Ys(χ) satisfies (3.5).
Now consider the evolution of a small perturbation δ(χ, τ) to Ys(χ). Equation (3.1)
gives

δτ = [Ψh(Ys + δ, Yh)]χ = [Ψ0 − c(χ)δ]χ + O(δ2), (3.7)
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with c defined by (3.3) and evaluated on Y = Ys. To leading order this gives, on
multiplying by c,

(cδ)τ = −c(cδ)χ. (3.8)

On characteristics dχ/dτ = c(χ), the quantity cδ (or any function of cδ) is conserved.
It is related to the momentum of the perturbation and (3.8) is the equation for
the conservation of disturbance momentum, with disturbance momentum carried
downstream in supercritical flow and upstream in subcritical flow, as expected. The
general solution of (3.8) can be written, for an arbitrary differentiable function F ,
as

δ =
1

c
F

(
τ−

∫
dχ

c(χ)

)
. (3.9)

Momentum conservation (and the solution (3.9)) requires that the amplitude of a
perturbation increases as its propagation speed decreases and becomes arbitrarily
large approaching a point where the speed vanishes. In a AC flow without an SL a
small perturbation to the material interface introduced just downstream of the leading
edge of the topography would be swept downstream, first shrinking in amplitude as −c
increased to its maximum at the topography maximum and then growing arbitrarily
large as −c decreased to zero at the trailing edge of the topography. The interface
position would be convectively unstable. The AC flow without an SL would not be
observed as the final state of an initial value problem. In general an SL is required
in a flow wherever the perturbation speed decreases to zero in the direction of
propagation.

Lawrence (1993) noted that a stratified SL did not require a shock or internal
hydraulic jump. Rather, its dynamics are non-hydrostatic. He also suggested that the
exact position of the internal hydraulic control is weakly dependent on frictional
forces. The dispersive terms of (2.9) are equivalent in the present Rossby-wave
problem to non-hydrostatic terms in the stratified flow and are shown in § 4 to give
the internal structure of the transition. However the SL, which is smooth over along-
channel scales of order the channel width, is a step change in the interface position
on along-channel scales of order of changes in the topography and its position and
size can be determined from the hydraulic solution alone. In terms of the total
streamfunction Ψ the requirement that the flow is steady becomes a requirement that
Ψ is constant along the interface, i.e.

Ψ (x, Y (x)) = Ψ0, (3.10)

for some constant Ψ0. Differentiating (3.10) gives

d

dx
{Ψ (x, Y (x))} = 0. (3.11)

Multiplying (3.11) by Y (x) and integrating with respect to x from x− to x+ gives

0 =

∫ x+

x−
Y (x)

d

dx
{Ψ (x, Y (x))} dx = −

∫ x+

x−
ΨYxdx+Ψ0(Y+ − Y−)

= −
∫ Y+

Y−
Ψ (Y , Yh(x))dY +Ψ0(Y+ − Y−), (3.12)

where Y− = Y (x−) and Y+ = Y (x+) and to move to the final expression of (3.12) it
is necessary that Y (x) is a monotonic function of x in the region x− < x < x+.

So far no assumption has been made about the abruptness of the transition. Now
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Figure 3. A comparison of the approach-controlled CD solution of HJH11(c), shown as a
dash-dotted line, with steady solutions of the finite-amplitude dispersive equation (2.9) and the lim-
iting supercritical leap solution satisfying (3.13). Here Y0 = 0.5, ε = 0.25, α = (3π)−1 (so Fr ≈ 0.42).
The topographic perturbation has finite support, with f = cos4( 1

2
πχ) for |χ| < 1 and vanishing

otherwise, and the shelf edge is shown dashed. The three solid curves are for the values µ ≈ 0.0386,
0.0039 and zero. The geometry of HJH11(c) corresponds to the largest dispersion and it can be
seen that except in the immediate neighbourhood of the SL the relevant finite-amplitude solution
reproduces the CD integration accurately, particularly near χ = 1 where f(iv) is discontinuous.

assume that the transition takes place over a distance small compared to the scale
of changes in the shelf width. This will always be true for sufficiently small µ. Then
to order µ, Yh(x) can be taken to be constant, Y T

h , and Ψ can be replaced by the
hydraulic form Ψh, giving the required jump conditions,

Ψh(Y−, Y T
h ) = Ψ0, (3.13a)

Ψh(Y+, Y
T
h ) = Ψ0, (3.13b)∫ Y+

Y−
Ψh(Y , Y

T
h )dY = Ψ0(Y+ − Y−). (3.13c)

The multiplicative function chosen in moving from (3.11) to (3.12) is arbitrary in
the sense that any function of Y alone could be chosen. The particular choice is
motivated in § 4 by considering the form of the solution within the jump. The three
unknowns in (3.13) are Y− and Y+, the heights either side of the SL, and Y T

h , the
topographic displacement at the SL (which fixes the position through (2.10)). The
three polynomial matching relations (3.13) determine them uniquely. In the present
inviscid flow the position of the SL is fixed and so in slightly viscous flow the
position could be expected to vary only weakly with frictional forces as noted by
Lawrence (1993) in stratified flow. Figure 3 gives a comparison between the AC flow
in a long-time CD solution of the full equations taken from figure 11(c) of HJH
(denoted HJH11(c) herein) and results from the finite-amplitude equation (2.9). These
solutions are obtained by approximating the steady form of (2.9) by finite differences
and solving the resulting nonlinear algebraic equations by Newton’s method as noted
in the Appendix. The CD integration is shown dash-dotted and three solutions of (2.9)
are shown. The solution with the vertical jump is the limit µ → 0 of the dispersive
solutions and the position of the jump agrees precisely with the solution of (3.13).

3.2. Twin supercritical leaps

For Y0 = 1
2

the four flow types noted in HJH completely describe the hydraulic
behaviour of the system. However, in the range (whose bounds are derived below)
where 0.0938 < Y0 <

1
3
, a regime exists where none of the four flow types identified in
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Figure 4. A twin supercritical leap (TSL) solution of the hydraulic equation (3.5) for Y0 = 0.15,
ε = 0.1 and α = 0.17 (so Fr ≈ 1.33). (a) The hydraulic diagram with the TSL solution shown bold
and the Ψh contour from which it is constructed shown as a dash-dotted line. (b) The TSL solution
in the channel geometry for the shelf-edge (dashed) (2.11) and steady solutions of the long-wave
dispersive equation (2.9) with µ = 0.01 and 0.1. The hydraulic TSL solution corresponds to the limit
µ→ 0. As dispersion (µ) decreases the slopes of the SLs increase.

HJH are possible and a new type occurs. To see this consider the hydraulic contour
shown in figure 4(a). Subcritical flow can be eliminated as the flow is well within
the upstream-supercritical region and contour slopes are negative at (Y0, Y0). CC flow
can be eliminated as the critical contour (with (Ψh)Y = 0 at Yh = Yε and Ψh < αY0)
cuts Yh = Y0 only once. AC flow can be eliminated as the contour with (Ψh)Y = 0 at
Yh = Y0 (and Ψh > αY0) intersects Yh = Y0 again in Y > Y0. Thus the downstream
level would be greater than Yh, i.e. the flow would not cross the step. Finally, purely
supercritical flow can be eliminated as no monotonic trajectory joins Yh = Y0 to
Yh = Yε. The remaining possibility is the trajectory shown in bold, where the flow
passes through an SL between two supercritical branches of the contour. The flow
is symmetric with two SLs, one upstream and one downstream of the maximum
topographic perturbation. This type of flow is termed a twin supercritical leap (TSL)
here. The flow can be described in the physical terms used for AC flows. The flow
lies within the general region of upstream-supercritical flows with information carried
downstream from χ � 1. The hydraulic contour is thus undisturbed upstream and
passes through (Y0, Y0). The speed −c of a small disturbance moving along this
contour in the flow direction decreases as Yh decreases and would vanish before Yh
reached Yε. As noted above this would lead to small disturbances growing arbitrarily.
The flow thus jumps to the alternative, larger-Y , supercritical branch and continues to
Yh = Yε. As Yh increases after the topographic extremum the solution retraces its path
along the upper-Y supercritical branch. Before Yh can return to Y0 a second point
where c vanishes is approached and to avoid the singularity the solution jumps back
to the original, lower-Y , supercritical branch. Figure 4(b) shows the TSL solution
of figure 4(a) for the topography (2.11). Also shown are two steady solutions of
the finite-amplitude equation (2.9) with µ > 0 obtained by the Newton method of
the Appendix. As in figure 3, dispersion smooths the supercritical transition but the
hydraulic solution with the jump conditions (4.7) accurately predicts the position
of the transition in the finite-µ solutions and the behaviour outside the immediate
neighbourhood of the transition.

3.3. Hydraulic regime diagrams

Figure 5 gives regime diagrams for seven values of Y0 showing the regions of the
(α, ε) parameter space associated with the different types of hydraulic solution. The
axes also show the values of the alternative pair (Fr,B) where B = ε/Y0 gives the
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Figure 5. Regimes diagrams showing the regions of the (α, ε) parameter space associated with the
different types of hydraulic solution of (3.5). (a) Y0 = 0.05, (b) Y0 = 0.1, (c) Y0 = 0.25, (d) Y0 = 0.5,
(e) Y0 = 0.75 and (f) Y0 = 0.9. The regimes are U – subcritical (as waves can propagate upstream),
C – constriction-controlled (CC), A – approach-controlled (AC), T – twin supercritical transition
and D – supercritical (as waves are swept downstream). The curve B1 is the CC/supercritical
boundary, B2 the CC/subcritical boundary, and B3 the AC/CC boundary. The ‘+’ in (e) shows the
parameter values corresponding to the cusp catastrophe of § 4.2 and figure 8 and the flow evolution
of figure 16.

fraction of the shelf blocked by the topographic indentation and so varies from zero
to one. In some parameter regimes more than one type of flow is possible. Numerical
integrations of the initial value problem for the full dispersive wave equation (2.9) as
in § 5 show that, in general, if a steady state with undisturbed upstream conditions,
or a flow without an SL, exists then the flow evolves to this state and figure 5 is
drawn on this basis. Small dispersion, however, appears to alter the relative stability
of solutions in small, exceptional, regions of parameter space and §§ 4.2, 5.3 discuss
how weak dispersion leads to an AC flow in a region where a well-behaved hydraulic
subcritical flow exists.
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Let Y0C solve simultaneously

1
8
(1 + Y0C)2(1− Y0C) = Y (1− Y )2, Y = 1

3
− 1

6
(4− 3(1 + Y0C)2)1/2, (3.14)

so Y0C ≈ 0.09384. Then the regime diagram takes one of the following five forms.
Type I: 0 < Y0 < Y0C. Only three hydraulic solutions – supercritical, CC and

subcritical – occur. Figure 5(a) shows the example Y0 = 0.05, with the CC/supercritical
and CC/subcritical boundaries the curves B1 and B2, respectively. B1 and B2 meet
at (α1, 0), where α1 = Y0(1−Y0), and, to leading order in Y0, the diagram is symmetric
about the line α = α1.

Type II: Y0C < Y0 <
1
9
. All five hydraulic solutions occur. Figure 5(b) shows the

example Y0 = 0.1. The new AC and TSL regimes lie above the point where B1 meets
the line α = 1

8
(1 + Y0)

2 (= α2, say). The TSL regime lies between α = α2 and B1.
The CC/AC boundary, B3 (say), begins at the same point with the AC region lying
between B3 and α = α2. With increasing Y0 this multiple intersection moves down the
curve B1 towards α1.

Type III: 1
9
< Y0 <

1
3
. This type differs from Type II only at the TSL/supercritical

boundary. Figure 5(c) shows the example Y0 = 0.25. The TSL/supercritical boundary
is now the line α = 4/[27(1 − Y0)] (= α3, say) for ε > ε3 (where 0 < ε3 < Y0) and
B1 otherwise. With increasing Y0 the intersections of B1 and the lines α = α2 and
α = α3 move down B1, until for Y0 = 1

3
they both become (α1, 0) and the TSL region

vanishes.
Type IV: 1

3
< Y0 <

2
3
. This type is qualitatively similar to the case Y0 = 1

2
described by HJH and shown here in figure 5(d). The AC/supercritical boundary is
α = α1 and B2 and B3 intersect this boundary at ε = 0. Only four hydraulic solutions
occur: subcritical, CC, AC and supercritical.

Type V: 2
3
< Y0 < 1. This type has the same four hydraulic solutions and

AC/supercritical boundary as Type IV. Figures 5(e) and 5(f) show the examples
Y0 = 0.75 and 0.9. The CC region is always thin. The intersection of the curves B2

and B3 on the line α = α1 now occurs in ε > 0 and moves up the line as Y0 increases,
reaching ε = 1 in the limit Y0 → 1, when only supercritical and subcritical flows
occur.

4. Steady dispersive solutions
Steady, dispersive solutions of (2.9) with µ > 0 have been included in figures 3 and

4 for AC and TSL flows. The main effect of dispersion is to smooth sharp changes
in the flow: in the cos4 topography of figure 3 the finite-µ solutions smooth the
solutions near χ = 1 where f(iv) is discontinuous. Here the value of µ for comparison
with the CD integration of the full equations follows by choosing µ so that the
topography occupies the region |χ| < 1. For the CD integration of HJH11(c) this
gives µ = (π/16)2 and it can be seen how closely the solution of (2.9) with this value of
µ reproduces the CD integration near χ = 1. The agreement is not as close at the SL
once the jump becomes steep as neglected higher-order derivatives become important.
However the dispersive solution shows accurately the centre of the jump and where
the CD solution begins to deviate from the hydraulic solution. The Newton method
of the Appendix is particularly effective for these flows as the form of the flow far
upstream and far downstream is known and the flow can be posed as a boundary
value problem.

The Newton method also provides rapid solutions for steady completely super-
critical flows. No examples are given here since, apart from the smoothing at sharp
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Figure 6. The interface C (solid line) in steady subcritical flow with Y0 = 0.5, α = 0.1 and
ε = 0.1, with the shelf-edge (dashed) and the hydraulic (µ = 0) solution (dash-dotted). (a) µ = 0.5.
(b) µ = 0.1. For both values of µ the standing waves in the lee of the obstacle have approximately the
same wavelength relative to the channel width. In (a) this wavelength is closer to the topographic
scale and the topography forces the waves more efficiently, giving a wavetrain with amplitude
approximately twice the amplitude of the topographic perturbation. In (b) the wavetrain amplitude
is less than ε.

changes in the topography, as in the supercritical upstream section of figure 3, the
departure of the finite-µ flows from the hydraulic solutions is imperceptible.

Finite-amplitude wavetrains of the form discussed in CJ can stand in subcritical
flows. Requiring that the deviation of the material surface C remains bounded is
not sufficient to give a unique solution as wavetrains can appear in steady solutions
upstream of the topography. However, as noted in § 3.3, apart from small exceptional
regions of parameter space, time-dependent integrations in the subcritical regime
evolve to flows with no disturbance far upstream. Numerically integrating the steady
form of (2.9) inwards from undisturbed flow at χ = ∞ as an initial value problem
gives a stable problem with a unique solution. Figure 6 shows steady subcritical flow
from a Runge–Kutta integration. The waves in the lee of the obstacle for both values
of µ have approximately the same wavelength relative to the channel width and
correspond to the periodic free wavetrains of CJ standing in the oncoming flow of
speed α. The wavelength in (a) is closer to the topographic scale so the topography
forces the waves more efficiently, giving a wavetrain with amplitude approximately
twice the amplitude of the topographic perturbation. In (b) the disparity between the
wavelength and the topographic length scale is larger and the wavetrain amplitude
reduced by over one half.

The remaining flow type is CC flow. As in fully subcritical flow, the flow is
subcritical upstream of the topography and so may support a steady upstream-
standing wavetrain. It appears that for any set of parameters there is a continuum of
steady solutions with upstream wavetrains of various amplitudes all of which give the
same supercritical flow downstream of the control at the constriction. It is unclear
how to determine the unique steady solution (if it exists) to a given initial value
problem. It might be possible to use nonlinear group-velocity arguments as in Smyth
(1987) to determine a unique solution but this will not be pursued further here. The
time-dependent integrations of § 5 show that for some parameter values, like those of
figure 12, there appears to be little or no upstream wavetrain whilst others, like those
of figure 9, show wavetrains that remain unsteady.

4.1. The structure of supercritical leaps

In the steady flows described above, save those with SLs, the displacement of the
material interface C in the limit µ→ 0 varies slowly for slow topographic variations. In
an SL the displacement changes rapidly although the topography changes slowly. The
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Figure 7. (a) Phase trajectories for equation (4.2). Here Yh = 1
2
, α = 0.1 and Ψ0 = 0.05. The insets

and outsets of the saddle points are dashed. For these parameter values the two saddle points have
the same ‘potential’ V . The heteroclinic orbit joining the saddle points and passing through the
region Yx > 0 is shown dashed in bold. (b) The kink soliton corresponding to the bold trajectory of
(a), monotonically joining Y− to Y+. (c) Phase trajectories for Yh = 0.55, α = 0.1 and Ψ0 = 0.055.
The saddle points (filled circles, •) have different potentials. The homoclinic orbit (bold dashed)
from the saddle point at larger Y circles the centre (also a filled circle, •) at smaller Y .

exact form of the leap follows by considering the governing equation (2.9) in a layer,
centred on the SL, that is thin compared to the scale of the topography. Equation
(2.9) shows that this layer has thickness of order µ1/2 � 1 on the topographic scale χ,
and so the relevant interior variable for the SL is x. In effect the governing vorticity
equation becomes the full equation (2.4) and a steady CD solution should be sought.
However, the formal ordering in µ leading to (2.9) remains valid provided higher-order
derivatives of Y (χ) remain small. From CJ this appears to be so provided the slope
of the interface remains moderate on the shelf-width scale (Yx . 0.5 in figure 7). The
following description of the SL is thus based on (2.9) and the result compared with
the CD integration of HJH11(c).

Take the origin for χ to be at the SL. Then the governing equation inside the SL
comes from the steady form of (2.9) as

Ψh(Y , Y
T
h )− 1

3
Y (1− Y )

d

dx
[Y (1− Y )Yx] = Ψ0, (4.1)

where Y T
h is the (constant, on this scale) topographic displacement at the SL. Solutions

of (4.1) are discussed in detail in CJ. Multiplying (4.1) by Yx and integrating with
respect to x gives the phase-plane equation

1
6
Y 2(1− Y )2Y 2

x + V (Y , Y T
h ) = E, (4.2)

where E is an arbitrary constant and the ‘potential’ V is given by

V (Y , Yh) = Ψ0Y + 1
2

[−α− Yh + 1
2
Y 2
h − 1

4
Y 2 + 2

3
Y
]
Y 2− 1

6
(Y −Yh)3H(Y −Yh). (4.3)

In the (Y , Yx) phase plane maxima of V give saddle points and minima of V
give centres. Thus (3.3) shows that centres correspond to subcritical flow and saddle
points to supercritical flow. The solutions of (4.1) relevant to an SL are the kink
solitons that monotonically join the two heights Y− and Y+ immediately outside the
jump, asymptoting exponentially to each limit. These correspond in the phase plane
to heteroclinic orbits joining two different saddle points at the same ‘potential’. Leaps
thus occur only between supercritical flows. Figure 7(a) shows a phase plane portrait
for an SL. The relevant heteroclinic orbit is shown bold and dashed. Figure 7(b)
shows the corresponding kink soliton solution. Since the potential surface is locally
flat at the saddle points and the saddles have the same potential, they satisfy the
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three equations

VY (Y−, Y T
h ) = 0, (4.4a)

VY (Y+, Y
T
h ) = 0, (4.4b)

V (Y−, Y T
h ) = V (Y+, Y

T
h ). (4.4c)

In terms of the hydraulic function Ψh these become the SL matching conditions
(3.13) and thus support the multiplicative function chosen in moving from (3.11) to
(3.12).

Because ΨYY is discontinuous across the step a general explicit solution of (3.13)
is not straightforward for AC flows. However the SL in TSL flows does not cross
the step and a complete solution is possible. The combination of the requirement
that Ψh(Y , Y

T
h )−Ψ0, regarded as a cubic in Y , vanishes at three points and that the

integral between the outer zeros vanishes forces the cubic to be antisymmetric about
the middle zero. This middle zero coincides with the inflection point of the cubic
which, in the TSL regime (where Y0 <

1
3
), lies at Y = 1

3
. As the zeros at Y = Y+,−

lie symmetrically either side of Y = 1
3

and the disturbance speed c is even in Y − 1
3
,

c(Y−) = c(Y+): the speed c of small disturbances to the interface is continuous across

the SL when seen on the long length scale χ. Writing Ŷ = Y − 1
3

and Y+,− = 1
3
± γ

gives

Ψh(Y , Y
T
h )−Ψ0 = 1

3
(Ŷ 3 − γ2Ŷ ). (4.5)

Requiring both sides to be equal at Ŷ = 0 and to have the same slope there gives the
two equations

(Y T
h )2 = 3Ψ0 + 1

9
− α, γ2 = (Y T

h )2 + 1
3
− 2α. (4.6)

For a material contour originating from (Y0, Y0) as in TSL flows, the streamfunction
constant is Ψ0 = αY0. Substituting into (4.6) and rearranging gives

Y+,− = 1
3
± [ 4

9
− 3α(1− Y0)

]1/2
, Y T

h =
[

1
9
− α(1− 3Y0)

]1/2
, (4.7)

the explicit solution for the three unknowns Y+, Y− and Y T
h . Equation (4.2) can be

written
4
3
Y 2(1− Y )2Y 2

x = (Ŷ + γ)2(Ŷ − γ)2, (4.8)

with solution

1
2

√
3(x−x0) = Y +

1

2γ

(
γ2 − 1

3
γ − 2

9

)
log(Y+−Y )− 1

2γ

(
γ2 + 1

3
γ − 2

9

)
log(Y −Y−), (4.9)

where x0 is an arbitrary constant of translation. This is the explicit form for the
interface displacement within the SL. As expected, x→ ±∞ as Y → Y+,− and x = x0

when Y = 1
3
.

Since the disturbance speed c is continuous across the SL of a TSL the momentum
cδ is conserved across the SL (taking the mass δ as conserved). This contrasts with
the SL of AC flow where c is not continuous across the SL. Crossing the step in
AC flow appears to apply an impulse to the interface that alters the momentum of
disturbances on the interface. For the non-rotating stratified flow of Lawrence (1993)
and Baines (1984), the material interface cannot pass through the ridge and so the
SL would appear to be more closely modelled by the continuous-disturbance-speed
SLs of the TSL regime. This leads to the hypothesis that the criterion fixing the
position and size of SLs in two-layer stratified flows is the requirement that both the
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Figure 8. Steady flows for Y0 = 0.75, ε = 0.05 and α = 0.15, corresponding to ‘+’ in figure 5(e).
The left-hand diagram in each part is the hydraulic diagram for the flow. The basic solution Ψh

is shown as dash-dotted and is the same in each part. The relevant hydraulic solution constructed
from Ψh is shown in bold on each hydraulic diagram. The right-hand figures show the dispersive
solutions (non-zero µ) (solid lines) with the topography (dashed) and the relevant hydraulic solution
(dash-dotted). (a) Subcritical flow for µ = 0.15443. The inaccessible supercritical solution is indicated
by an arrow in each part. On the hydraulic diagram it is a single point (filled circle) and in the
channel it gives the undisturbed level for the lee wavetrain (dotted). For this extreme value of µ
the lee waves are periodic almost-solitary waves. (b) AC flow for µ = 0.1, 0.2. The solutions change
little from the hydraulic solution, simply becoming smoother with increasing µ. For µ < 0.15443
the subcritical and AC flows coexist but for larger µ the subcritical solution disappears.

streamfunction on the interface and the long-wave speed of small disturbances to the
interface are the same on both sides of the leap.

4.2. Loss of the subcritical solution branch

Time-dependent integrations, outside small exceptional regions, show flows in the
subcritical regime evolving to solutions undisturbed far upstream (Y → Y0 as χ→∞)
and thus the constant streamfunction value on the interface C is fixed as Ψ0 = αY0

in subcritical flows. Further, the periodic wavetrain of a steady subcritical flow lies
downstream of the topographic perturbation where the shelf width has regained its
upstream value, Y0. Thus in the wavetrain Yh is fixed and equal to Y0. These conditions
differ from those for an SL in § 4.1 since the SL occurs at the perturbation (where
Yh < Y0) and Ψ0 6= αY0 determines the upstream influence in AC flow (although,
as noted in § 4.1, Ψ0 = αY0 in TSL flows, where the upstream flow is undisturbed).
Figure 7(c) shows a typical phase portrait for subcritical flow, with α = 0.1, Y0 = 0.55
and so Ψ0 = 0.055. The two saddle points have different potentials and so no leap is
possible. A homoclinic orbit from one saddle point (a supercritical solution) circles
the centre, giving a negative-amplitude solitary wave with far-field displacement equal
to the supercritical solution. The constant downstream displacement of the hydraulic
(µ = 0) subcritical solution is given by Y = Y0 at the centre. The downstream
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Figure 9. A CC solution of (2.9) and (2.11) for Y0 = 0.25, ε = 0.1, α = 0.1 and µ = 0.2. (a) The
evolution of A = Y − Y0. (b) The interface C at T = 120 with the shelf-edge (dashed) and the
hydraulic solution (dash-dotted).

wavetrains of steady subcritical flows with µ > 0 are given by the orbits circling
the centre. Increasing µ (so decreasing the disparity between the wavelength and
the topographic scale and generating waves more efficiently, as in figure 9) increases
the radius of the corresponding orbit. In some small regions of parameter space,
when µ is increased past some critical value µ0 (the topography is sufficiently short)
the required amplitude of the forced wavetrain corresponds to an orbit radius that
exceeds the radius determined by the solitary-wave separatrix and the subcritical
solution branch disappears. The critical value µ0 is determined by noting that the
‘potential’ V defines a potential well about Y = Y0 and the loss of the subcritical
solution branch corresponds to the escape of a particle from this well. The ‘energy’
of a particle is the value, immediately after the topographic perturbation, of E given
by (4.2). For any µ it follows by integrating the steady form of (2.9) inwards from
x � 1, as in figure 6. The critical value µ0 is the value of µ for which the energy E
equals the energy on the separatrix, E0 (say), i.e. the potential V at the saddle point.
For µ > µ0, E exceeds E0 and the particle escapes.

In the present geometry subcritical solution loss occurs when the CC region of
parameter space is very narrow and the AC and subcritical regions almost border
each other. Figure 5 shows that this is possible for particular values of α and ε when
Y0 > 2/3. Figure 8 gives steady flows for Y0 = 0.75, ε = 0.05 and α = 0.15, indicated
by ‘+’ on figure 5(e), where the CC region is narrow. An hydraulic (µ = 0) subcritical
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flow exists. For µ > 0 a downstream wavetrain appears and grows in amplitude with
increasing µ. At the critical value µ0 ≈ 0.15444, the wavetrain has grown sufficiently to
correspond to the solitary wave forming the separatrix in the phase plane. For µ < µ0

subcritical flows exist and for µ > µ0 subcritical solutions disappear. Figure 8(a)
shows subcritical flow at µ = 0.15443 just before this branch of solutions vanishes.
The hydraulic diagram shows the (µ = 0) subcritical solution in bold, with an arrow
showing the supercritical solution corresponding to the solitary-wave saddle point.
This supercritical solution is not smoothly accessible from the subcritical solution as
this would require passing into Yh > Y0 and, by (2.11), Yh 6 Y0 always. The interface
C in figure 8(a) shows that the wavetrain has become a train of almost-solitary waves
with broad crests, narrow troughs and undisturbed level given by the ‘inaccessible’
supercritical (µ = 0) solution. For µ > µ0 the sole candidate for steady flow is the AC
flow of figure 8(b), containing an SL with both Yh and Ψ0 differing from subcritical
flow. The hydraulic diagram shows AC flow for µ = 0 when it coexists with subcritical
flow. The right-hand part of figure 8(b) gives the interface C for µ = 0, 0.1 and 0.2 (so
µ > µ0) showing that this branch of solutions varies smoothly with µ, simply becoming
slightly smoother as dispersion increases. The flow exhibits a cusp catastrophe under
the two control parameters Yh and Ψ0 as the strength of the perturbation is increased,
dropping from the metastable subcritical flow to an absolutely stable AC flow with
different values of both Yh and Ψ0 (Thompson & Stewart 1986; Jackson 1990).

5. Unsteady dispersive solutions
This section presents numerical integrations of the initial value problem (2.9) with

topography (2.11), obtained using pseudospectral operators in space and a third-order
Runge–Kutta integration in time. The method is an adaption of that proposed for
weakly nonlinear dispersive systems by Fornberg & Whitham (1978). The accuracy
and other details of these spectral methods are discussed in Canuto et al. (1988). Three
different values of Y0 are considered for various ε and α with µ = 0.2 everywhere
except in the final figure, figure 16, where µ = 0.05

5.1. Y0 = 0.25

The hydraulic diagram for Y0 = 0.25 shows that five types of hydraulic flow are
possible. Three of these, spanning the CC, AC and TSL regimes, are described here
for ε = 0.1.

Figure 9 shows flow development when α = 0.1 which falls in the CC regime close
to the AC boundary. The initial disturbance forms into two shocks, one propagating
upstream and the second forming downstream of the topography. Between these
two shocks a CC solution forms, closely described by the hydraulic solution. The
upstream shock disperses into an undular bore which appears to remain attached
to the topography. The downstream shock forms an undular bore which propagates
away leaving the constant-amplitude negative (Y < Y0) plateau of the hydraulic
solution. At large times the solution becomes steady immediately downstream of the
topography, but small-amplitude waves are continually generated at the leading edge
of the topography to propagate upstream on the positive (Y > Y0) plateau there. The
development of flows within the CC region, but closer to the subcritical boundary,
differs slightly from figure 9. Integrations for α = 0.05 (not shown here) show the
same initial formation of upstream and downstream shocks. However, the upstream
bore disperses into a single solitary wave that propagates away to leave a steady
upstream plateau, whilst the downstream wavetrain becomes steady and remains
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Figure 10. As figure 9 but for an AC solution of (2.9) and (2.11) for α = 0.15.

attached to the topography (as seen later in figure 12 for Y0 = 0.5). The contrast
between these finite-amplitude evolutions is similar to that described by Grimshaw
& Smyth (1986) and Smyth (1987) in studying resonant weakly nonlinear solutions
of the forced KdV equation. They found for ‘positive’ forcing that the asymptotic
solutions took one of two forms: either a steady positive plateau formed upstream
with a steady nonlinear wavetrain downstream, or a steady negative plateau formed
downstream with unsteady large-amplitude waves being formed at the leading edge
of the topography.

Figure 10 shows AC flow. First a CC-like solution forms at the topography. Then its
associated transition steepens and moves to the downstream side of the topography,
becoming at large times an SL. The same evolution occurs in the CD example of
AC flow in HJH11. The initial upstream shock of the CC solution evolves into a
dispersionless bore with a trailing rarefaction, rather than an undular bore of figure
9. The downstream undular bore propagates rapidly away, leaving behind a negative
plateau whose amplitude varies slowly as the flow evolves from CC to AC. Near the
topography the solution agrees closely with the hydraulic solution, suggesting that
the flow there has almost reached a steady state. At large time the positive upstream
plateau and negative downstream plateau move monotonically towards the predicted
hydraulic solution, although as figure 10 and the simulations of HJH show, AC flows
take far longer to reach an asymptotic state than CC flows. In contrast to figure 9,
dispersion has little effect here apart from smoothing the SL.
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Figure 11. As figure 9 but for a TSL solution of (2.9) and (2.11) for α = 0.196.

Figure 11 shows an evolution from the very narrow TSL regime. The development
is typical of supercritical solutions, with no upstream influence and a wavetrain swept
downstream. At large time the interface near the topography moves monotonically
towards the predicted hydraulic solution, although, as in figure 10, the approach is
slow. Once again, dispersion has little effect apart from smoothing the SLs.

5.2. Y0 = 0.5

For Y0 = 0.5, the symmetric, mid-channel-shelf geometry of HJH, the CC and AC
regimes are of particular interest. This subsection gives examples for the relatively
large-amplitude perturbation of ε = 0.25, the value, in the present notation, used in
the CD simulations of CC and AC flows in HJH. For moderate ε flows evolve in a
similar, but less extreme, manner.

Figure 12 for α = 0.05 falls into the CC regime near the subcritical boundary.
The flow develops initially like the CC flow of figure 9. However, as the flow lies
near the subcritical rather than the AC boundary the subsequent behaviour differs.
The downstream undular bore evolves into a stationary lee wavetrain attached to the
obstacle and upstream small waves continually generated at the obstacle propagate
away along the positive plateau given by the hydraulic solution. The hydraulic solution
accurately models the behaviour near the maximum topographic perturbation, but
fails due to dispersive effects both upstream and downstream. This solution should
be compared with HJH6(a) where α ≈ 0.053 and µ ≈ 0.15. Figure HJH6(a) shows
no upstream wave generation as the domain shown is too narrow, but HJH6(b),
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Figure 12. As figure 9 but for a CC solution of (2.9) and (2.11) for Y0 = 0.5, ε = 0.25, α = 0.05.

where µ ≈ 1, does show weak unsteady waves at the leading edge of the topography.
In both flows of HJH6 the leading wave of the downstream wavetrain overturns to
form an eddy, although for the longer topography this is only a slight pinching. The
present formulation requires Y to be single-valued. Dispersive effects in the governing
equation (2.9a) prevent the interface C from becoming vertical and so, provided the
resolution of the computation is sufficiently high, flow evolutions can be followed
until C approaches the vertical. In figure 12 the slope does not become vertical
anywhere even though the interfaces of HJH6 show pinching. Once C approaches
the vertical, the closeness of the long-wave integration to the CD simulation is not
assured, however, as higher-order derivatives, neglected in the derivation of (2.9a) may
become important. A brief discussion and comparison of long-wave and overturning
CD integrations for the coastal geometry of Clarke & Johnson (1997a, b) is given in
Johnson & Clarke (1998).

Figures 13 and 14 give evolutions in the AC regime where the CD integrations
of HJH overturn even for long obstacles. Figure 13 with α = 0.1 corresponds to
HJH11 and figure 3 where α ≈ 0.106 and µ ≈ 0.04. The evolution terminates just
after T = 65 when the interface touches, and then attempts to pass through, the wall
at y = 0. Figure 13(b) shows that the touching is at the base of the transition that has
moved downstream from its initial position upstream of the topographic maximum.
This agrees with HJH11(b) where the transition overturns as it moves downstream
of the topographic maximum. The removal of the possibility of overturning leads
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Figure 13. As figure 12 but for an AC solution of (2.9) and (2.11) for α = 0.1. The integration
terminates just after T = 65 as the interface strikes the wall.
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Figure 14. The interface C at time T = 50 of an AC solution of (2.9) and (2.11) with Y0 = 0.5,
ε = 0.25, α = 0.175 and µ = 0.2. The shelf edge is dashed and the hydraulic solution dash-dotted.

the evolution to fail by predicting that the interface passes through the wall. Again,
similar behaviour for coastal flows has been noted in Clarke & Johnson (1997b) and
Johnson & Clarke (1998). Figure 13(a) shows that between T = 20 and T = 40
a small wave, possibly a shock or hydraulic jump, forms on the negative plateau
immediately downstream of the transition as the solution changes from being CC
to AC flow. The wave moves downstream ahead of the transition, decreasing in
amplitude. An identical feature is apparent in the CD simulation of HJH11(a).

Figure 14 shows the interface C at large time from a second large-amplitude AC
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Figure 15. As figure 13 but for an AC solution of (2.9) and (2.11) for Y0 = 0.75, ε = 0.1, α = 0.15
(so Fr = 0.8).

flow. A constant-amplitude wake propagates downstream leaving behind a region
where the flow evolves monotonically towards the predicted hydraulic solution. This
differs from weakly nonlinear solutions where the bore amplitude decreases down-
stream and also from the CD integrations of HJH where the wave at the upstream
edge of the downstream-propagating bore overturns. As in the evolution of figure
12, provided the resolution is sufficiently high, integrations of equation (2.9a) do not
overturn even when the CD integrations do. The filtering out of short-scale effects
in the long-wave equation leads to faster dispersion of the downstream undular bore
and prevents overturning of the wave forming the bore’s upstream edge.

5.3. Y0 = 0.75

The regime diagram shows four hydraulic solutions for Y0 = 0.75: subcritical, CC,
AC and supercritical. Except for large ε, where the interface overturns early in the
evolution, the CC regime is narrow and so CC flows for this value of Y0 are unlikely
to be observed. This leaves subcritical and AC flows as those whose behaviour is of
most interest. Two examples are given here.

Figure 15 shows AC flow with ε = 0.1 and α = 0.15 (so Fr = 0.8). Upstream the
evolution is similar to the other AC flows with a rarefaction propagating away from
the topography. The downstream-propagating wavetrain evolves differently. Instead
of developing into a solitary wave the leading edge of the downstream undular bore
forms into a dispersionless shock which propagates downstream. The shock is a



50 E. R. Johnson and S. R. Clarke

1.0

0

0.5Y

–20 –10 0 10 20
χ

T = 400

Figure 16. An unsteady solution of (2.9) and (2.11) for Y0 = 0.75, ε = 0.05, α = 0.15 (so Fr = 0.8)
and µ = 0.05, corresponding to the steady flows shown in figure 8. The interface C is shown at
T = 400 with the shelf-edge (dashed) and the AC hydraulic solution (dash-dotted).

propagating kink soliton as described in CJ and § 4.1. Here however Y− and Y+ are
fixed as the Y -positions of the two possible supercritical hydraulic solutions (saddle
points) and Y T

h = Y0. The conditions (3.13) or (4.4) now determine the propagation
speed of the shock. Downstream from the shock the wake is beginning to disperse
into a train of negative solitary waves of the same form as those given by the dashed
trajectory of figure 7(c), pointing towards the centre of the channel from the positive
plateau of the supercritical solution. At large times the flow near the topographic
perturbation becomes steady, with a constant-amplitude positive plateau upstream
and negative plateau downstream, in close agreement with the hydraulic solution.

Figure 16 shows the interface C at large time for a smaller-amplitude perturbation
at the same speed α but with much reduced dispersion of µ = 0.05. The parameter
values correspond to the ‘+’ of figure 5(e), falling into the subcritical region but
close to the AC region. This is the point noted in § 4.2 where the subcritical solution
branch disappears when µ exceeds µ0 ≈ 0.15444. The dispersion in figure 16 is
however far smaller with µ < 1

3
µ0. Nevertheless, the solution ignores the well-behaved

(metastable) subcritical flow (which has a far smaller-amplitude wavetrain than figure
8(a)), evolving to the coexisting (absolutely stable) AC flow. The evolution is slow
because dispersion is weak, but by T = 400 the interface shows the downstream
wavetrain dispersing into a train of negative solitary waves dipping down from the
reference level given by the ‘inaccessible’ supercritical solution, as in figure 15. It
appears that when the CC region of parameter space is too small to offer a barrier
between subcritical and AC regions, unsteady flows can evolve to be AC well before
the topography is so short that the solution passes through the cusp catastrophe of
§ 4.2.

6. Discussion
The simple model introduced in HJH of Rossby-wave hydraulics in a rotating

channel has been extended to incorporate higher-order, dispersive, effects. Retaining
higher-order terms in the aspect ratio µ1/2 of the motion gives a finite-amplitude
evolution equation for the potential vorticity interface, which at leading order is the
hydraulic equation derived in HJH. At the next order dispersion becomes important,
preventing the formation of the shock-like discontinuities typical of hydraulic solu-
tions. The evolution of the interface can thus be efficiently followed up to large time
and steady equations integrated to give continuous stationary solutions.

The hydraulic behaviour of the system for simple contractions (only one extremum)
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of the shelf width depends on three non-dimensional parameters: Y0, the unperturbed
position of the topographic step; ε, the maximum perturbation to the position of
the step; and α, the oncoming flow speed. Here the analysis of HJH for the special
symmetric case of Y0 = 1

2
has been extended to the full range of these parameters.

Five types of hydraulic solutions occur: subcritical, supercritical, controlled at the
constriction (CC), controlled at the leading edge (approach-controlled, AC) and twin
supercritical leaps (TSLs). The first four have been described in HJH but the last
occurs only for Y0 <

1
3
. For each value of Y0 the regimes for these solutions have

been delineated in the (α, ε)-plane, giving five characteristic types of regime diagrams.
The general form depends on whether 0 < Y0 <

1
3
, 1

3
< Y0 <

2
3

or 2
3
< Y0 < 1.

Three of the hydraulic solutions – subcritical, supercritical and CC – are smoothly
varying. The remaining two, AC and TSLs, involve sudden jumps of the hydraulic
solution between different supercritical branches. Integrations and analysis of the
steady form of the finite-amplitude evolution equation show that in the hydraulic
limit these supercritical leaps (SLs) correspond to the kink soliton solutions of the
unforced problem. Transitions occur between points on the hydraulic curve having
the same value of the ‘potential’ V of (4.3). Hydraulic theory augmented by the
jump conditions (3.13) or, equivalently, (4.4) determines the position of an SL. Within
the SL dispersive effects are important at leading order. Although the analysis
of SLs and TSLs is particularly straightforward for the present model with its
simple two-valued potential vorticity distribution, these phenomena should be generic
for systems with similarly shaped hydraulic diagrams. The simple single-step shelf
discussed here is equivalent to filtering out the higher cross-channel modes present
over smoother depth changes and retaining only the fundamental mode. In coastal
wave-scattering problems over finite-amplitude topography restricting attention to
the fundamental mode has been shown to give accurate approximations to the full
multi-mode solutions (Johnson 1990, 1993). Preliminary calculations indicate that the
flow behaviours described here are also present in continuously stratified flows.

In supercritical, AC and TSL flows dispersion simply smooths the hydraulic solution
where the interface slope would otherwise change rapidly. In subcritical flows a finite-
amplitude standing lee wavetrain forms downstream, and upstream the interface
displacement is given by the constant value of the hydraulic solution. CC flows show
two distinct behaviours depending on whether they lie nearer the subcritical or AC
boundaries of the CC regime. Those near subcritical flow show the constant upstream
interface displacement and steady downstream wake typical of subcritical flow. Those
near AC flow show the steady downstream displacement of supercritical solutions
but at the leading edge of the obstacle show continual, unsteady, generation of waves
which propagate upstream superposed on the plateau of the hydraulic solution. In
general, all these flows, at least near the perturbation and often elsewhere, are well-
described by hydraulic theory. However, in some flows for Y0 >

2
3

even very weak
dispersion changes the whole character of the flow. This happens when the CC region
separating the subcritical and AC regions is thin as in figure 5(e) or the CC and AC
regions are absent and subcritical borders supercritical as in figure 5(f). Near these
boundaries the steady subcritical solution disappears as the dispersion µ is increased
(the topographic scale reduced) past some critical value µ0, leaving an AC solution as
the sole candidate for steady flow. Integrations of the initial value problem show that
in these parameter regimes even far smaller dissipation (µ < 1

3
µ0) leads flows to evolve

to the coexisting steady AC flow rather than the well-behaved smooth subcritical flow.
The long-wave formulation (2.9) is valuable for unsteady flows as it can be straight-

forwardly numerically integrated with high accuracy to large times, contrasting with
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the CD integrations of HJH which become prohibitively computationally intensive
as the disturbance to the interface lengthens. CD simulations can, however, follow
flows after the interface overturns, as it will in flows forced by sufficiently large
perturbations (ε comparable to Y0 or 1 − Y0) of sufficiently small scale (µ ∼ 1). The
three overturning sites are within a downstream-propagating bore, at the upstream
wave of what would otherwise be a steady lee wavetrain, and during the formation
of some AC flows. In CD integrations eddies forming on a downstream-propagating
bore are swept away without affecting the flow near the topography whereas large
eddies formed in a steady lee wavetrain remain near the topography and alter the
flow field. In both these cases the long-wave problem (2.9) can be integrated without
difficulty provided the resolution of the computation is sufficiently high. Filtering out
the short-scale components regularizes the evolution of the interface. This seems to
give an accurate description of the long-time behaviour when the CD eddies are swept
downstream but may be inaccurate when the eddies remain near the topography. The
overturning during the formation of some AC flows is more troublesome both here
and in the CD simulations and appears for large ε even when dispersion is small.
As noted in § 5.2, HJH11 shows the transition associated with an initially CC flow
steepening as it move slowly downstream to eventually overturn close to the wall
y = 0. Integration of the long-wave problem for these parameters (figure 13) fails
when the steepening interface attempts, as it moves downstream, to pass through the
wall y = 0. Here filtering out the short scales precludes following the evolution further.
To carry the CD integrations to very large times HJH found it necessary to replace
the downstream wavetrain at some large intermediate time with a smooth transition.
The evolution could then be followed to a monotonic steady state closely agreeing
with the hydraulic solution (figure 3). Vanishingly small frictional effects could lead
however to flows in this parameter regime departing from the CD integration. In
discussing AC flows in two-layer non-rotating flow over topography Lawrence (1993)
suggests that friction may cause a transition to evolve to a hydraulic jump upstream
of the point at which the steady SL of the AC flow would be expected to form. It is
not straightforward to include frictional effects in the CD integrations but they could
be added to the long-wave model in the same way as to the forced KdV equation in
Smyth (1988).

The dispersive hydraulic method should prove useful in other flows where hydraulic
theory has been applied. It has been previously used by Grimshaw & Yi (1990) and
the authors to study finite-amplitude waves on coastal currents. Indeed, in the present
geometry in the limit Y0 → 0, 1 and ε→ 0 the appropriate cross-channel length scale
becomes the shelf width rather than the channel width and the analysis approaches
that of Clarke & Johnson (1997a, b).

The UK Natural Environment Research Council supported this work under grant
number GR3/09174. We are grateful to the referees whose comments let us improve
the presentation of this work.

Appendix. Numerical determination of steady solutions
Steady solutions of the governing equation (2.9) can be rapidly and accurately

evaluated by a Newton iteration. Equation (2.9) can be written in the form

Ψh(Y , Yh) +
µ

6
Ψ1(Y , Yh)− µ

3
Y (1− Y )

∂

∂χ

[
Y (1− Y )Yχ

]
= ψ0, (A 1)
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where Ψh(Y , Yh) and Ψ1(Y , Yh) are low-order polynomials in Y and the derivatives
of Yh are known analytically. Take N evenly spaced points χi (i = 1, . . . , N) and let
yi and Fi be the corresponding values of Y (χ) and the residuals of equation (A 1) at
these points (with the derivatives of Y in (A 1) approximated by central differences).
Then the discrete form of (A 1) is

F (y) = 0, (A 2)

and the corresponding Newton iteration

y(n+1) = y(n) + ŷ(n), (A 3a)

where
T ŷ(n) = −F (y(n)). (A 3b)

The non-zero elements of the tridiagonal Jacobian matrix T follow easily by direct
differentiation as

Ti−1,i = −µ
3
yi(1− yi) [yi(1− yi)/h2 + (1− 2yi)y

′
i/h
]
, (A 4a)

Ti,i =
∂Ψh

∂Y
(yi, Yh) +

µ

6

∂Ψ1

∂Y
(yi, Yh) +

2µ

3
[yi(1− yi)]2 /h2

−µ
3

{
2y′′i

[
yi(1− yi)2 − (1− yi)y2

i

]
+ y′2i (1− 6yi + 6y2

i )
}
, (A 4b)

Ti+1,i = −µ
3
yi(1− yi) [yi(1− yi)/h2 − (1− 2yi)y

′
i/h
]
, (A 4c)

where y′i = (yi+1 − yi−1)/2h and y′′i = (yi+1 − 2yi + yi−1)/h
2. The iteration can be

readily adapted to a stretched grid, however the tridiagonal inversion is so rapid
that no stretching was found necessary even for the thinnest transition regions.
Typical computations with 4000 points required approximately ten iterations and a
few seconds of CPU time on a PC to converge to an accuracy of 10−10.
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